Exercise 19

Let $f(x)=x^{2}$.
(a) Estimate the values of $f^{\prime}(0), f^{\prime}\left(\frac{1}{2}\right), f^{\prime}(1)$, and $f^{\prime}(2)$ by using a graphing device to zoom in on the graph of f.
(b) Use symmetry to deduce the values of $f^{\prime}\left(-\frac{1}{2}\right), f^{\prime}(-1)$, and $f^{\prime}(-2)$.
(c) Use the results from parts (a) and (b) to guess a formula for $f^{\prime}(x)$.
(d) Use the definition of derivative to prove that your guess in part (c) is correct.

Solution

Part (a)
Draw the tangent lines to the graph at the given values of x and estimate their slopes.

As a result,

$$
\begin{aligned}
f^{\prime}(0) & =0 \\
f^{\prime}\left(\frac{1}{2}\right) & =1 \\
f^{\prime}(1) & =2 \\
f^{\prime}(2) & =4 .
\end{aligned}
$$

Part (b)

Draw the tangent lines to the graph at the given values of x and estimate their slopes.

As a result,

$$
\begin{aligned}
f^{\prime}\left(-\frac{1}{2}\right) & =-1 \\
f^{\prime}(-1) & =-2 \\
f^{\prime}(-2) & =-4 .
\end{aligned}
$$

Part (c)

Notice that the slope is double the value of the x-coordinate, so

$$
f^{\prime}(x)=2 x .
$$

Part (d)

Calculate the derivative of $f(x)=x^{2}$ from the definition.

$$
\begin{aligned}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} & =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x
\end{aligned}
$$

